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Abstract. We have derived interatomic pair potentials for liquid- transition metals using

. the tight-binding cluster Bethe lattice method (CBLM) in which the important role of s
electrons (changing the number d electrons, screening d charge transfer and band mixing
effect via' s—d hybridization) can be treated self-consistently. Coupled with molecular
dynamics simulations, we have caleulated the static structure factors S(g) of the 3d
liquid transition metals, which are in good agreement with the experimental ones. The

_ results for the electronic density of states of these metals as well as their cohesive energy
are also presenied. We have also discussed our results in the light of those obtained in
the Wills-Harrison and Pettifor models. ,

1. Introduction

Very recently, there have been a few advanced studies of interatomic interactions for -
transition metals. Mosts of these works are based on a study of Wills and. Harrison
(WH) [1], who used a separate treatment for sp and d states, leading to an effective
pair potential that takes into account the role of s electrons in changing the number
of d electrons. The WH pair potential has been used to determine the thermodynamic
properties of liquid transition metals by applying the Gibbs-Bogoliubov variational
scheme with hard-sphere [2], hard-sphere Yukawa [3] and charged hard-sphere [4] .
fluid as a reference system. However, as has been analysed and tested by Regnaut
[5], the very deep potential well predicted in the WH model for its first minimum and
its position lead to many difficulties in describing. the structure of transition metals
with half-filled and less than half-filled d bands. The deficiencies of the WH model
can be explained by the crudeness of the treatment of s—d hybndnzanon as well as
the neglect of multi-ion potentials [6].
.. These difficulties can be overcome in an alternative approach developed by
Pettifor in the tight-binding (TB) bond model derived from first principles within
dens;ty-functlonal theory [7,8]. In this model, an angular-dependent many-body
‘potential expression for the bond order, which gives the direct dependence of the -
bond strength on the local atomic environment, can be obtained. The explicit analytic
form of these many-body potentials has the necessary ingredients for an adequate
description, but there are difficulties in practice when it comes to incorporating the
charge-transfer contribution between different orbitals in a self-consistent manner.
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Whereas there is strong evidence that the contributions of multi-ion terms are
necessary in the study of solid transition metals, it is believed that progress in the
understanding of their liquid-state properties may only come about by using effective
pair potentials [4] that take accurate account of the important s-d hybridization and
charge-transfer contributions.

The last remark has encouraged us to develop a new simple effective pair
interaction for disordered (liquid, in particular) transition metals, which possesses
the correct attributes of the s electrons in a self-consistent description of their liquid
structures. Our formalism is based on the tight-binding scalar cluster Bethe lattice
method (SCBLM) [9], which is expected to be valid in disordered systems. This method
has enabled us to study successfully the sp—d hybridization in some transition alloys
and to determine chemical short-range order from a self-consistent calculation of
charge transfer {10, 11]. Since the fourth moment of the local density of states, u,,
which characterizes the band-mixing effect, can be reproduced accurately from the
SCBLM [12], we hope that the TB bond contribution derived from this model will
be improved in comparison with an embedding potential [13, 14] through the second
moment p, approximation. It is interesting to note that Hausleitner and Hafner have
recently calculated the bond order to interatomic forces in disordered transition-metal
alloys using a Bethe lattice reference, but taking into account only the d-clectron
contribution, the s—d hybridization matrix element in their model Hamiltonian being
completely neglected [15]. However, it is known that s—d hybridization plays a non-
negligible role in transition-metal cohesive- properties [16] and produces changes in
predictions for phase stability.

In the next section we present the derivation of the interatomic interactions
in the SCBLM scheme and illustrate in detail the attractive and repulsive pairwise
contributions to the total energy in the case where the distance dependence of the
hopping integrals is assumed to follow the power law r~9. In section 3 we couple
these interatomic interactions with a molecular dynamics simulation to study the
liquid structures of the 3d transition metals. More particularly, we show that our
interactions yield reasonable agreement between calculated static structure factors
S{q) and the experimental ones. In section 4, studies of the electronic structure and
of the cohesive energy of these metals are presented to stress the importance of the
s—d hybridization effect. In section 5 we complete our results with a discussion and
the possibility to extend this model in the case of transition-metal alloys. Finally, we
make explicit the relation between the power-law parametrization of the pair potential
and the binding-energy universality in the appendix.

2. Theoretical appreach to interactomic forces

21. Total energy

The total energy derived from first principles within the density-functional theory can
be written in the form [7]

U= Urep + Upona + Uprom - S ¢Y)
where Uy, is a semi-empirical pairwise repulsive contribution, namely .
Urep = % Z q)xep(Rij) (2)

i1
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and Uy, 4 s the covalent bond energy that results from computing the local electronic
density of states (LDOS) =, ( E) associated with orbital « on site ¢ within the two-
centre orthogonal tight-binding approximation. Then we obtain

_U.,ond=_2 / (E-Bun(E)OE - ®

where E;, s the effective atomic energy level of orbital « at site 7 and Ej is the
Fermi energy In the derivation of equation (1) from first principles {71, the pa;rw:sc '
nature of the repulsive term follows directly from the Harris-Foulkes approximation
to density-functional theory [17], whereas the Hiickel-type two-centre orthogonal form
of the matrix elements may be justified from either chemlaal pseudopotentlal [18] or
muffin-type orbital theory [19]

The third contribution in equation (1) is the promotion energy, whzch takes
into account the change in occupancy of an energy level of orbital « or going
~ from the reference free-atom state to a given bonding situation. In general, this
contribution depends also on the charge transfer between orbitals in each considered
state. Assuming that the crystal-energy—ﬁe]d terms produce identical shifts for the s
and d atomic energies on a given site in the case of trans;tlon-metal systems, the
promotion energy can be defined by [20] .

-,U.,mm_=__(1.~?2—.E£)AN Y ¢

where E! and EJ are the atomic energy levels corresponding to the reference free-
atom state with N Y and NY's and d valence electrons respectively and AN =

— NY. In practice, the bond energy is evaluated under the constraint that the
numbcrs of s and d electrons on each site are kept fixed and equal 1o their reference
‘values, respectively, through the adjustment of the atomic energy levels. It has been
shown to be valid to first order [21]

" 22 Bond energy in .S'CBLM

'Ih&bond energy ‘may be broken down in terms of coﬁtribdtions from individual pairs
of bonds [20, 22] by writing equation (3) as

Ubond = 5 Z Uglna S ®
EHhES S
where
Ugnd_ZEHlﬂjﬁg;fﬁ i : - ’ . (6)
] : '

where the prefactor 2 accounts for spfn degenéracy, H is the tight-binding matrix
linking the orbitals on sites 7 and j together, and 6 is the corresponding bond-order
matrix whose e]ements are defined at energy E as [23]:

0;050(E) = /F)I(BI(E+0- H) Yic). )
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We note here that, for a self-adjoint representation of H (that is, the tight-binding
Hamiltonian), we can obtain

Im{FB|(E +i0 — H) 'fie) = {Im[{¢, [(E + 10— H) ")
—(¢_(E+i0- H) ¢ )] &

where

bs = (12X (b5 £ bia)- | ©)

Equation (8) allows us to find again the definition of bond order given by Pettifor,
by using the bonding G, and antibonding G_ Green functions [7,8]. Here, from
equations (3), (5), (6) and (7), we write the bond order in terms of the imaginary
part of the off-diagonal Green functions:

Er .

2 B - ‘
6ipia=| jm‘.a(E)dE:—;.f Im GZP(E) dE. (10)

In disordered systems such as liquids, instead of the LDOS =, ( E) or the Green
function Gf}ﬁ ( E), we are imterested only in configuration-averaged values. In order
to calculate these quantities, we have used the SCBLM. One assumes that the mean
{ocal environment is isotropic, and then there is spherical point symmetry for the
CBLM mean-field model [24]. This method is efficient to study s—d hybridization
effects in disordered systems; in particular, one can use it to explain the positive
Hall coefficient in some transition-metal disordered systems [25]. The question of the
validity of the Bethe lattice approximation for hybridization is of course important,
and Mayou ef al [9] have shown that the geometrical local environment does not
play a major role in the electronic structure of a liquid, provided that the average
coordination number is sufficiently high (Z > 10). In order to obtain the bond order
in the SCBLM formalism we first recall the matrix expression of the Green function of
an atom in CBLM [26]:

' : -1
GEBLM(z) = (zl— - zzpntusu(z)) )
J

where (%) denotes the species (A or B) at site i, p;; are the pair probabilities and
t;; and §;; are the matrix of hopping energies and the so-called transfer matrix
respectively. In the spherical approximation made by SCBLM, we obtain simple scalar
equations for the Green function in the subspaces «(¢) of atom ¢ as [9]

-1
— 2 -
Gogiy(2) = (z -E.9—-ZY, "a(z‘)ﬁ(;‘)qa(n('-)) (12)
80 ,

where one defines

2 — ' 2 '
ouinsi) = ZPrimsTag a0y (13)
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_ w1th ng the degeneracy of subspace 3 and T, (,J 80 the mean square of the matrix
- element between a state of subspace « of atom ¢ and a state of subspace 3 of atom
7 (see equation (10) in [9])- Finally C ﬁ(.'r)(z) can be defined by

V 1
Gh(2) = (Z = Egiy = 2_ (b)) G«(:c)(z)) (14)

(k)
with |
(0851 = 1(Z = D/ 2@ 35,70
By comparing (11) with (12) and (13) it follows that
ta@,80) 586000 (2) = s Ty, ﬁ(J)Gﬁ(:)(z) @9

On the other hand, the transfer matrix § i is related to the off- dlagonal Green function

by

Ga(ine®(®) = I Sa(2,6( () Caina® ()= naSa(iai(?)Gam(z). (16)
By using (7), (15) and (16), we obtain the bond potential from (6) as
: 2 : EF-."',-'_ ‘
- Vbona = __Ztaff)'ﬁ(i)lm f ["asﬂc:‘).a(f)(E)Ga(s)(E)] dE
= _'EI‘“ / (76 ”ﬁTaa),ﬁmGa(e)(E)G (,)(E)]dE

= Z,,; q’a(z).ﬁm ' | ' - an

From equation (17) it is clear that, in our formalism, the bond potential interaction -
can be expressed directly from the local Green functions treated in the mean isotropic
environment. We note that the expression (17) is also valid in the more general case
‘of a binary alloy. There is no difficulty to show that 8.,y a¢;y ~ Z7'/% as a property
of the Bethe lattice system [22], For a pure metal, the bond order on the Bethe
lattice can be obtained from (17) by puttmg pry = 1 in equations (11) and (13)..In
the last case, we have .

bond  _ gbond ' o -
Pata = Pad,aty | : s
in the limit of Z — oo. The. édvaﬁ_tage of equation (17)-is that it allows us to estimate
the different orbital contributions in the bond energy, in particular, to treat the effect

of hybridization explicitly. Assuming that the bond order BJ(ﬁ) i(a) N equation (10)
is a slowly varying funcnon of the ‘bond Iength we obtain

o00) = tarsO8e (19
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with the distance dependence of the hopping integral ¢.;) g.;y. Flere the average
hopping integrals are evaluated according to Harrison’s power-law dependence [27]:

(W'm) =y b? frr? (20a)
for s and p electrons and

(W'm) = ny B2 fmrtti+H (206)
for other electrons.

2.3. Pair potential and universality of the binding energy

To determine the repulsive part of the total energy, we assume repulsive pairwise
interactions proportional to +~* that are capable of reproducing the behaviour of
the bulk modulus across-the 3d transition-metal series as has been fitted by WH to
obtain the values of pseudopotential parameter r, (the empty core radius). Another
fitting may be made by requiring that at 7 = 0 K the energy is minimum at the
observed volume of the metal, but as has been emphasized by Regnaut [5] in the
WH model, it is more difficult in this case to obtain a shallower potential well shifted
towards a large value of interatomic distance. As the tepulsive energy of the system
is constructed from s and d-electron contributions, we have

‘I’mp("'ij) = ‘I’f-ep(f‘ij) + ‘I’fep("”ij) @21
with

O = Cof; (22a)
and

@ = Cafrii (225)

where C; and C; are two unknown structure-dependent parameters (see appendix).
The justification of the distance dependence used in equations (22q) and (22b) and
their relations with the expressions (204) and (20b) are given below. Then, in addition
to the experimental bulk modulus, we use the experimental equilibrium volume of
the 3d metals t0 obtain the second parameter [28]. We have also verified that
these parameters are not strongly modified by a decrease of 10% of the crystal bulk
modulus. The experimental values of the atomic volume £, bulk modulus B and the
corresponding calculated parameters of the repulsive interactions are also presented
in table 1. In figure 1, we present pair potentials calculated with our model for
the 3d ligquid transition metals. These total effective interatomic potentials can be
decomposed into contributions from s and d electrons, and we use a coordination
number of Z = 12 corresponding to the close-packed crystalline and liquid metals. As
shown in this figure, the variation of s and d hybridized band potential contributions
across the 3d series implies that the full potential has a larger d-like attractive well
at the middle and at the beginning of the series. The pair potential of the late 3d
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* Table 1. Input parameéters for the calculations of the imteratomic forces:. liquid
temperature 7, atomic volume £2g, bulk modulus B. The correspondmg mlculated
constants Cs, Cy are presented in the last two columns. . .

o Toson . Q0. B : Gy . Cy
Element - (°C) (AYY (1M Nm=2) V) - V)

. T 1760 19.15 - 1.051 10574 0.1153
v 1500 1577 1619 15751 © 0.1498
Cr © 1900 1396 1901 20416 01558

Mn 1260 1527 0596 18744  0.0449
Fe 1550 13.22  1.683 14389 0.1208
Co - 1550 1270 1914 - 07790  0.1306
Ni - 1500 1261 1860 Q7003 01158

Cu 1150 1328 . 1370 . - 02865 . 0.0861

metals (Ni, Cu) is expected to be dominated by the s-like contribution. This behaviour
emphasizes the important role of the s—d hybridization effect in studymg the atomic
structure of transition-metal liquids.

The last point upon which we would like to comment in this section concerns
the scaling problem of the binding energy when the repulsive and attractive pair
interactions are parametnzed by a power law as (ry/r)? and (ry/r)?. It is well known
that by using the pair interactions parametnzed as simple exponentials one can derive
binding energy—distance universal relations valid for transition metals [22,29,30]. In
particular, Abel [22] has.found for the one-band case, when the bulk band epergy
per atom can be written as

Fy(+) = Z| Aa exp(—pr) - Bbexp(~qr)] @

that the s&uaure dependence of the scaling cohesive energy D} = —EB(y,S) at
. the scaling equilibrium mteratom;c dlstance ¥ =y, (see append;x) is given by the
following expression:

D; '_—..,Z(a/b)’/(-‘-‘r—l)r_ . ' T S @9

Here s = p/q and a and b are structure-dependent parameters characterizing the
net electron density and the bond order, respectively; A and B are positive quantities
characteristic for a given atomic species. The ratio s is constant along transition-metal
series with values between 2 and 5. It is not difficuit to show (see appendix) that the
- relation (24) is valid not only for the exponential model but also for the power-law
expression:

By(r) = ZlAaQl/r?y = B/ @5

chosen in this paper. It allows us w justify the values of s = 2 and 3 for s- and

d-band contributions, respectively, used in our calculations. :

- On the other hand, the transferability of the TB parameters can be improved

by modifying their functional forms as suggested by Goodwin [31]. Following these

authors, we have also chosen to introduce a smoothed step function to reduce the

. range of the atomic interactions; this effect is noticeable for the late 3d metals in
which the s-like contribution becomes important. The two scaling smoothed step
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Figure 1. Interatomic potential obtained from our calculations for the liquid 3d transition
metals. The full curve corresponds to the total potential, the broken curve to the s-
hybridized contribution and the dotted curve 1o the d-hybridized contribution.

functions have been chosen in such a way that the step is positioned between the
first and the second nearest neighbours in the Fcc lattice and that the interactions
become zero at [ /2, where L is the linear dimension of the molecular dynamic cell.
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3. The liquid strocture of the 3d transition metals

3.1. Molecular dynamics' simulations

We have used our interactomic interactions in a standard microcanonical NV E
molecular dynamics (MD) investigation of liquid structure of the 3d transition metals.
Our molecular dynamics routines are based on integrating the equations of motion
in a velocity form of the Verlet algorithms [32]. A 1332-particle cluster with periodic
boundary conditions is used and the lattice parameter of the molecular dynamics cell
is expanded to give the required liquid density [28] The time increment h in our
simulations is chosen to be approximately 10~% s. The liquid is then ‘heated’ by
raising initial temperature and subsequently scaling it down o the requued value.
‘Iyplca] sunulauons run up to (3-4) x 10* steps.

3.2 Results

The pair,oorre]aticm functions g(») are calculated for 3d transition metals after
averaging over about - 250-300 independent configurations taken at intervals at 100
time steps. In order to verify the shouldered effect of the s~d hybridized potential,
we present in figure 2 the results of g(r) calculated for both cases: with the full
potential and with only the d part for Ti, Fe and Ni. Tt is clear from this figure
that the very deep potential well predicted in the second case leads to a noticeable
change in the theoretical determination of the first peak magnitude of g{r) for a

~ transition metal with less than half-filled (Ti) and with half-filled (Fe) d bands. This

remark is in agreement with Regnaut’s discussion on the validity of WH potentials [5].

‘The static structure factors S(q) for all the 3d elements are given in figure 3. Note
that our molecular dynamics simulation achieves a good fit to the diffraction data
[33] including the lightest 3d metal Ti and V [34]. By remembering that there are
only two experimental data to parametrize the interatomic interactions constructed in
our s-d-hybridization formalism, we think that they can serve as a basis for retiable’
sunulat:ons of llql.lid transition metals.

4, Electronic structure and total energy of the 3d liquid transmon metals

4 I Eieca'amc densuy of states

In order to test the validity of our interatomic interactions, we have also calculated

the electronic density of states of the molten 3d transition metals, from the atomic
. coordinates obtained by molecular dynamics simulations. Using the same tight—binding
‘Hamiltonian, the recursion method has been used and we have stopped the recursion
after about 12 levels for s and d orbitals. The site-averaged DOS was calculated for
a sample of 10 atoms randomly chosen among the innermost atoms. The electronic
“densities of states of the 3d liquid transition metals are shown in figure 4. Although
the global behaviour of the total DOS can be dominated by the d-band contribution,
the s—d hybridization effect can lead to a decrease in the s DOS inside the d band as
~ has been shown by Mayou ef al [9]. Except for the cases of Ti and V, where band
narrowing is expected in comparison with the crystalline case because of the large
volume expansion in the liquid state, we have found that the bandwidth is the same
in the molten and crystalline states. - Figure 4 displays the characteristic -bonding—
antibonding splitting in the d band -as has been obtained from the supercell finear
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A

Tren

Hickst

Figure 2. Pair correlation function g(r) obtained from mD simulations for three
representative liquid transition metals of the 3d seriess Ti, Fe and Ni. Full curves
are calculated from total hybridized s—d potential and dotted curves from d potential
without hybridization.

muffin-tin orbital (LMTO) approach of Jank et a! [35]. In table 2 our calculated DOS
at the Fermi level for the 3d liquid elements are compared with the data of Jank et
al and with those estimated from the magnetic susceptibilities [36].

4.2. Hybridization bond energy

The bond energy can be calculated in two different ways: it can be obtained either
from the average DOS calculated by a recursion method or from the attractive part of
the interatomic interactions; in this case, we use an average interatomic distance and
an average coordination number deduced from the position and the area of the first
peak of the pair correlation function respectively. The results of both estimations
are compared in table 3 and show good agreement between these two methods.
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Another interesting aspect is the -role played by s—d hybridization in the bonding
énergy of the transition-metal systems. This problem has been analysed in detail
~ with the renormalized atom approximation for the 3d and 44 series [16]. However,
in this work, the s—d hybridization terms have been estimated by a semiquantitative
- partitioning of their contributions -across the series. As has been shown in section 2
- the total bonding energy in our approach may be written as
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- Table 2. Comparison of our calculated density of states at the Fermi level with the
supercell approach [35] and with experimental ones for liquid Mn, Fe, Co and Ni [36].

n(Eg) (states/eV atom)

Calculated from  Calculated t'rom " Experiment

_ Element  this paper [35] : [36]
* Mn ‘250 234 . . 240
Fe 263 259 R - 260
Co 30 " 299 295

Ni 1.92 ) 210 2.10

Table 3. The calculated total bond energy obtainéd from the calculated DOS and from
the sceiM self-consistent caleulations. The fourth column shows the vatio of the s-d
hybridized contribution to the iotal bond energy for the liquid 3d transition metal.

Evond

weal
Eb""" ) (from SCBLM
(t'mm cakulated  self-consistent )
- Dosy . calculations) 2 fbond
—d
Element  (&V} &y E:"“"
) i i total
T . ~1022 ~10.17 © 052
v -15.06 —1498 © D49
-Cr . "=17.89 . ’ -1797 047
Mn —14.94 —1496 049 -
Fe ~13.14 -13.22° .52
" Co : -I073 C 1067 046
Mi — 9.76 — 970 - R ¥
Cu. — 538 . " — 546 - 0.42

) 'Ihble 4. Heat of fusion for the liquid 3d transition metals. Theory: mlculated in the
CBLM approach. Expenmem. from [40].

rEl'usmu = 'bfuszon T
“Element (K mol"l) (K mol"'l)
Ti 16.75 15.59
v : 1708 1558 .
Cr - 1422 - -H.63
-Mn 1485 14.63
" Fe. 1470 15.05
Co- = 1623 . Ia.51
oo Ni .0 1785 B )
- . Cu . 13.69° L1296

The ratio 2E%9/ E}i,"t;‘ is also presented in @ble 3 to emphasize the unportant
- percentage of s—d hybridization in bonding energies. It gives about 50% for all
elements of the 3d series and it fs about 60% for Ni liquid. For the last case, it
_is clear from figure 1 that, at the equilibrium position of the melt state, the s-like
. contribution of the pair potential becomes negative due to the hybridization effects..

4.3. The heat of fusion _- : . o
By deﬁmtlon, the heat of fu.s1on may be esnmated by comparing the cohesive energles
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Figure 5. Plot of the scaled bonding energy E3(y,s) versus y for different values of s.

in the solid and liquid states at the melting temperature [39]:

L= Egi - E4". @7
We have calculated the values of Eﬁ}‘lﬁd from equation (1) with the help of equations
(2), (3) and (26) and those of Eﬁ‘o on the same basis, i.e. using CBLM formalism
coupled with the same tight-binding Hamiltonian. The resuits of calculations are
presented in table 4; they show a good agreement with the experimental values [40].

5. Discussions and conclusions

We have constructed interatomic potentials based on the sCBLM formalism that takes
into account the important s—d hybridization effect for the transition-metal systems.
The expressions of the potentials are general and they can be applied to study liquid
or amorphous alloys. The short-range order in these systems may be incorporated
in a self-consistent manner and the results will be published elsewhere. In this
paper we have used this formalism to study the atomic and electronic structure of
the liquid 3d transition metals. We have found that the s-d hybridization effects
improves the description of the liquid structure not only for the late 3d elements
but also for the half-filled and less than half-filled ones. These correct trends for
the 3d liquid structure have been confirmed by: (i) the good agreement of the
static structure factors obtained from our molecular dynamics simulations with the
experimental ones; (ii) the TB DoS, which are similar to those calculated from ab
initio calculations; and (jii) the theoretica] results of the heat of fusion, which are
in agreement with the experimental ones. These results are very promising and
may be explained by the fact that we have obtained a decisive improvement in the
treatinent of s electrons in comparison with the WH model. In this model, s-d
hybridization is only treated by changing the relative occupancies of the s and d
bands, so that the most important effect of band mixing between s and d bands is
neglected. Our formalism is based on Pettifor’s description of the bonding energy, but
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the contributions of multi-ion terms are not taken into account in -our study, owing
to the Bethe lattice self-consistent approximation. However, as has been explained
previously, it allows us to incorporate the hybridization effects in a simple way and .
therefore the bond energy can be associated explicitly through the fourth moment:
of the local density of states. Therefore, these effective pair potentials are naturally

better than those obtained from the embedded atom models, which are valid only
within the second moment approxlmauon :
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Appendk

When the repulsive and attractive pair interactions are parametrized.as a power law,
the bonding energy for a given structure in the one-band case is

VEB(r) = Z[Aa;lg— Bb;l—q-] - o (Al

The equlhbnum mteratomlc separatmn T, I8 determmed from [dEg(r)/dr}|,—,,
= 0, which gives ' .

_ [Aap\Vem0 | o
and _ _ 7 _
D = EB( ).—;ZAa(sr'—I)(l/r?);;ZBb[s/('.s—l)'](rl/rg)’ @y

where D, is the cohesive energy and

s—p/q- S A9
From (Al)-(As)'ttie scaling procedure is | . | :
o B 1 [ (Y] o

B = T = 1| () -s(2)] @

o If,oné defines -

5 De,
[¢* Eg(r) /dr?]|

=

T=Te

(A6) |
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then it is not difficult to find
L= r/(pg)">. o (AT)

Substituting (A7) into (AS5) gives

R OR0)

Yy~ = (re/m)? = [(1/7) (). | a9

with

In figure 5 we show the dependence of the scaled bonding energy (A8) as a
function of ¥ for different values of s = p/q.

In order to analyse the structure dependence of D, we introduce a scaling
procedure that retains the structure variables ¢ and b. One defines

Ep(y.s)= iBT(;) (A10)
with
Dy = A(s— 1);"5 = B(S“s‘ i ;152- (Al1)
with
T = (sA/B)-D) (A12)
50 |
ry = (a/b)ll(P-q)rd__ (A13)

This scaling gives

Eg(y,s) =

= [“ G) ~bs G)] (A14)

¥ = (re/7). - (A15)

with

Therefore from

[dEE(y,S)]-

=0
dy

Y=Y
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‘we have

ye=(bfa)/e= | (a9
and
- D; = B33, $)

or )
Dt = Z(bfa)* Y, S @an

Equation (Al7) has exactly the same expression as those obtained from
exponential parametrization (see equation (28) of [22]). For the FCC lattice (Z = 12),
the recursion method gives b(FCC) = 0.206 with & = 1; so using equation (A17) one
obtains 5= 2.7, : :
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