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1. Phys: Condens. Matter 5 (1993) 1901-1918. Printed in the UK 

Effect of s-d hybridization on interatomic pair potentials of 
the 3d liquid transition metals 

L Do Phuong, A Pasture1 and D Nguyen Manht 
Labomtoire de Thermodynamique et de Physim-Chimie M&allurgiques, ENSEEG, 
BP 75,38402 St-Martind’Htrer Wex, France 

h i v e d  16 October 1992, in final form 22 DcEember 1992 - 
AbstmcL We have derived interatomic pair potentials for liquid transition metals wing 
the tight-binding duster %he lattice method (CBLM) in which the impotiant role of s 
electrons (changing the number d electrons, screening d charge transfer and band mhing 
effect via s-d hybridization) can be mated selfconsislently. Coupled with molmular 
dynamics simulations, we have calculated the static stmcture factors S(9) of the 3d 
liquid transition metals, which are in good agreement with the experimental ones The 
laults for the electmuic density of states of these metals as well as their mhesive energy 
are also presented. We have also discused our mults in the tight of those obtained in 
the Wills-Harrison and Pettifor models. 

1. Introduction 

Very recently, there have been a few advanced studies of interatomic interactions for 
transition metals. Mosts of these works are based on a study of Wills and Harrison 
(WH) [I], who used a separate treatment for sp and d states, leading to an effective 
pair potential that takes into account the role of s electrons in changing the number 
of d electrons. The WH pair potential has been used to determine the thermodynamic 
properties of liquid transition metals by applying the Gibbs-Bogoliubov variational 
scheme with hard-sphere 121, hard-sphere Yukawa [3] and charged hard-sphere [4] 
fluid as a reference system. However, as has been analysed and tested by Regnaut 
[5], the very deep potential well predicted in the WH model for its first minimum and 
its position lead to many difficulties in describing the structure of transition metals 
with half-filled and less than half-filled d bands. The deficiencies of the WH model 
can be explained by the crudeness of the treatment of s-d hybridization as well as 
the neglect of multi-ion potentials [6]. 

These difficulties can be overcome in an alternative approach developed by 
Pettifor in the tight-binding (m) bond model derived from first principles within 
density-functional theory [7,8]. In this model, an angular-dependent many-body 
potential expression for the bond order, which gives the direct dependence of the 
bond strength on the local atomic environment, can be obtained. The explicit analytic 
form of these many-body potentials has the necessary ingredients for an adequate 
description, but there are difficulties in practice when it comes to incorporating the 
chargetransfer contribution between different orbitals in a self-consistent manner. 

t Permanent address: Department of Physics, Polytechnic University of Hanoi, Vietnam 

W53-8984/m/131901+18$07.50 0 1993 IOP Publlshing Ud  1901 



1902 

Whereas there is strong evidence that the contributions of multi-ion terms are 
necessary in the study of solid transition metals, it is believed that progress in the 
understanding of their liquid-state properties may only come about by using effective 
pair potentials [4] that take a m r a t e  account of the important s-d hybridization and 
charge-transfer contributions. 

The last remark has encouraged us to develop a new simple effective pair 
interaction for disordered (liquid, in particular) transition metals, which possesses 
the correct attributes of the s electrons in a self-consistent description of their liquid 
structures. Our formalism is based on the tight-binding scalar cluster Bethe lattice 
method (SCBLM) [SI, which is expected to be valid in disordered systems. This method 
has enabled us to study successfully the sp-d hybridization in some transition alloys 
and to determine chemical short-range order from a self-consistent calculation of 
charge transfer [lo, 111. Since the fourth moment of the local density of states, p4, 
which characterizes the band-mixing effect, can be reproduced accurately from the 
SCBLM [12], we hope that the ?B bond contribution derived from this model will 
be improved in comparison with an embedding potential [13,14] through the second 
moment p2 approximation. It is interesting to note that Hausleitner and Hafner have 
recently calculated the bond order to interatomic forces in disordered transition-metal 
alloys using a Bethe lattice reference, but taking into account only the d-electron 
contribution, the sd hybridization matrix element in their model Hamiltonian being 
completely neglected [15]. However, it is known that s-d hybridization plays a non- 
negligible role in transition-metal cohesive properties [16] and produces changes in 
predictions for phase stabdity. 

In the next section we present the derivation of the interatomic interactions 
in the SCBLM scheme and illustrate in detail the attractive and repulsive painvise 
contributions to the total energy in the case where the distance dependence of the 
hopping integrals is assumed to follow the power law 7 - q .  In section 3 we couple 
these interatomic interactions with a molecular dynamics simulation to study the 
liquid structures of the 3d transition metals. More particularly, we show that our 
interactions yield reasonable agreement between calculated static structure factors 
S(q) and the experimental ones. In section 4, studies of the electronic structure and 
of the cohesive energy of these metals are presented to stress the importance of the 
sd hybridization effect In section 5 we complete our results with a discussion and 
the possibility to extend this model in the case of transition-metal alloys. Fiually, we 
make explicit the relation benveen the power-law parametrization of the pair potential 
and the bindingenergy universality in the appendix. 
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2. Theoretical approach to interactomic forces 

21. Eta1 energy 

The total energy derived from first principles within the density-functional theory can 
be written in the form [7] 

= 'rep + 'bond f 'pmm (1) 
where ClRP is a semi-empirical painvise repulsive contribution, namely 
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and Uhd is the covalent bond energy that results from computing the local electronic 
density of states (LDOS) n,,(E) associated with orbital a on site i within the two- 
centre orthogonal tight-binding approximation. Then we obtain 

where Eio is the effective atomic energy level of orbital a at site i and EF is the 
Wrmi energy. In the derivation of equation (1) from first principles [7], the pairwise 
nature of the repulsive term follows directly from the Harris-Foulkes approximation 
to density-functional theory 111, whereas the Hiickel-type two-centre orthogonal form 
of the matrix elements may be justified from either chemical pseudopotential [18] or 
muffin-type orbital theory [19]. 

The third contribution in equation (1) is the promotion energy, which takes 
into acw)unt the change in occupancy of an energy level of orbital a on going 
from the reference free-atom state to a given bonding situation. In general, this 
mntribution depends also on the charge transfer between orbitals in each considered 
state. Assuming that the crystalenerg-field terms produce identical shifts for the s 
and d atomic energies on a given site in the case of transition-metal systems, the 
promotion energy can be defined by [ZO] 

(4) 

where E," and E: are the atomic energy levels corresponding to the reference free- 
atom state With N," and N: s and d valence electrons respectively and A N  = 
Nd - N:. In practice, the bond energy is evaluated under the constraint that the 
numbers of s and d electrons on each site are kept fixed and equal to their reference 
values, respectively, through the adjustment of the atomic energy levels. It has been 
shown to be valid to first order [21]. 

22. Bond energy in scBm 
The bond energy may be broken down in terms of contributions from individual pairs 
of bonds [20,22] by writing equation (3) as 

where 

where the prefactor 2 acmunts for spin degeneracy, H is the tight-binding matrix 
linking the orbitals on sites i and j together, and 0 is the corresponding bond-order 
matrix whose elements are defined at energy E as 1231: 
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We note here that, for a self-adjoint representation of H (that is, the tight-binding 
Hamiltonian), we can obtain 

hn(jBI(E + io - H ) - I l i a )  = fIm[(++l(E+ io - H ) - ~ I + , )  
- (+-I(E+iO- W M - ) I  (8) 

where 

+* = (1/@)(4j@ *4ia).  (9) 

Equation (8) allows us to find again the delinition of bond order given by Pettifor, 
by using the bonding G, and antibonding G- Green functions [7,8]. Here, from 
equations (3), (S), (6) and (7). we write the bond order in terms of the imaginary 
part of the off-diagonal Green functions: 

E? 
e.  ,@,*- . = JEP 8,,,+(E)dE = -?/ ?r ImC$(E)dE. (10) 

In disordered systems such as liquids, instead of the mos n;,(E) or the Green 
function G$(E), we are interested only in configurationaveraged dues. In order 
to calculate these quantities, we have used the SCBLM. One assumes that the mean 
local environment is isotropic, and then there is spherical point symmetry for the 
CBLM mean-field model [XI. This method is efficient to study s-d hybridization 
effects in disordered systems; in particular, one can use it to explain the positive 
Hall coefficient in some transition-metal disordered systems [U]. The question of the 
validity of the Bethe lattice approximation for hybridization is of course important, 
and Mayou er a1 [9] have shown that the geometrical local environment does not 
play a major role in the electronic structure of a liquid, provided that the average 
coordination number is sufficiently high (2  > IO). In order to obtain the bond order 
in the smLM formalism we first recall the matrix expression of the Green function of 
an atom in am [26]: 

where I(i) denotes the species (A or B) at site i, prJ  are the pair probabilities and 
trJ and S,, are the matrix of hopping energies and the so-called transfer matrix 
respectively. In the spherical approximation made by SCBLM, we obtain simple scalar 
equations for the Green function in the subspaces a(i)  of atom i as 191 

where one defines 
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with no the degeneracy of subspace p and T&)!@(,) the mean square of the matrix 
element between a state of subspace a of atom z and a state of subspace p of atom 
j (see equation (10) in 191). Finally GfsC3,(z) can be defined by 

From equation (17) it is clear that, in our formalism, the bond potential interaction 
can be expressed directly from the local Green functions treated in the mean isotropic 
environment. We note that the expression (17) is also valid in the more general case 
of a binary alloy. There is no difficulty to show that OOL(i),p(J) - Z-'/' as a property 
of the Bethe lattice system [Z]. For a pure metal, the bond order on the Bethe 
lattice can be obtained from (17) by putting p I J  = 1 in equations (11) and (13). In 
the last case, we have 

in the limit of 2 -* 00. The advantage of equation (17) is that it allows us to estimate 
the different orbital contributions in the bond energy, in particular, to treat the effect 
of hybridization explicitly. Assuming that the bond order O j ( p ) , i ( o )  in equation (IO) 
is a slowly varying function of the bond length, we obtain 
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with the distance dependence of the hopping integral ta(il,o(j). Here the average 
hopping integrals are evaluated according to Harrison's power-law dependence [27: 

L Do Phuong et a1 

(11") = ql,mhz/m? (2W 

for s and p electmns and 

(11") = mm h21mr1ff'+1 

for other electrons. 

23. Paw potential and universaliry of the binding energy 
'Ib determine the repulsive part of the total energy, we assume repulsive pailwise 
interactions proportional to r - p  that are capable of reproducing the behaviour of 
the bulk modulus across the 3d transition-metal series as has been fitted by WH to 
obtain the values of pseudopotential parameter rc (the empty core radius). Another 
fitting may be made by "quiring that at T = 0 K the energy is minimum at the 
observed volume of the metal, but as has been emphasized by Regnaut [5] in the 
WH model, it is more digcult in this case to obtain a shallower potential well shifted 
towards a large value of interatomic distance. As the repulsive energy of the system 
is constructed from s and delectmn contributions, we have 

with 

and 

where C, and C, are two unknown structure-dependent parameters (see appendix). 
The justilication of the distance dependence used in equations (22) and (2%) and 
their relations with the expressions (Xu) and @Ob) are @en below. Then, in addition 
to the experimental bulk modulus, we use the experimental equilibrium volume of 
the 3d metals to obtain the second parameter 1281. We have also verified that 
these parameters are not strongly modilied by a decrease of 10% of the crystal bulk 
modulus. The experimental values of the atomic volume Q,, bulk modulus B and the 
corresponding calculated parameters of the repulsive interactions are also presented 
in table 1. In figure 1, we present pair potentials calculated with our model for 
the 3d liquid transition metals. These total effective interatomic potentials can be 
decomposed into contributions from s and d electrons, and we use a coordination 
number of Z = 12 corresponding to the close-packed crystalline and liquid metals. As 
shown in this figure, the variation of s and d hybridized band potential contributions 
acrws the 3d series implies that the full potential has a larger d- l ie  attractive well 
at the middle and at the beginning of the series. The pair potential of the late 3d 
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Tabk L liquid 
temperature T, atomic volume a,, bulk modulus B. The mmponding olmlated 
“ a n t s  C., C, are presented m the last WO mlumS 

Element (“c) (A3) (IOL1 N m-’) (ev) (ev) 
n 1700 19.15 1.051 1.0574 0.1153 
V 1900 15.77 1.619 1.5751 0.1498 
a 1900 13.76 1.901 20416 0.1558 
Mn 1260 15.27 0596 1.8744 0.0449 
Fe 1550 13.22 1.683 1.4389 0.1208 
CO 1550 1270 1.914 0.7790 0.1306 

cu 1150 13.28 1.370 a2665 0.0861 

Input parameten for the calculations of the interatomic fb- 

T~em 00 B c* c d  

Ni I5W 1261 1.860 a7003 0.1158 

metals (Ni, Cu) is expected to be dominated by the s- l ie  contribution. This behaviour 
emphasizes the important role of the sd hybridization effect in studying the atomic 
structure of transition-metal liquids. 

The last point upon which we would l i e  to comment in this section concerns 
the scaling problem of the binding energy when the repulsive and attractive pair 
interactions are parametrized by a power law as ( T , , / T ) ~  and ( rU/T)q. It is well known 
that by using the pair interactions parametrized as simple exponentials one can derive 
binding energy4istance universal relations valid for transition metals [22,29,30]. In 
particular, Me1 [E] has found for the one-band case, when the bulk band energy 
per atom can be written as 

&.(TI = ZIAaarp(-~r) - B b q ( - ~ ) l  (23) 

that the structure dependence of the scaling cohesive energy 0: = -EB(y,s) at 
the scaling equilibrium interatomic distance y = ye (see appendix) is given by the 
following expression: 

0: = Z(n /b )S I (s - l ) .  (24) 

Here s = p/q and a and b are structure-dependent parameters characterizing the 
net electron density and the bond order, respectively; A and B are positive quantities 
characteristic for a given atomic species. The ratio s is constant along transition-metal 
series with values between 2 and 5. It is not difficult to show (see appendix) that the 
relation (24) is valid not only for the exponential model but also for the power-law 
expression: 

G(T) = Z[AU(I /TP)  - S b ( l / ~ ~ ) ]  (25) 

chosen in this paper. It allows us to justify the values of s = 2 and 3 for s- and 
d-band contributions, respectively, used in our calculations. 

On the other hand, the transferability of the TB parameters can be improved 
by modifying their functional forms as suggested by Goodwin [31]. Following these 
authors, we have also chosen to introduce a smoothed step function to reduce the 
range of the atomic interactions; this effect is noticeable for the late 3d metals in 
which the s-like contribution becomes important The two scaling smoothed step 
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QUE 1. Interatomic potential obtained Gum our calculations For lhe liquid 3d transition 
metals. The full curve mrresponds to the total potential, Ihe broken cuwe to the s 
hybridized wntribution and the dotted curve to the d-hybridized contribution. 

functions have been chosen in such a way that the step is positioned between the 
first and the second nearest neighbours in the FCC lattice. and that the interactions 
become zero at L / 2 ,  where L is the linear dimension of the molecular dynamic cell. 
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3. The liquid strocture of the 5d transition metals 

3.1. Molecular dynamics simuhtiom 

We have used our interactomic interactions in a standard microcanonical N V E  
molecular dynamics (MD) investigation of liquid structure of the 3d transition metals. 
Our molecular dynamics routines are based on integrating the equations of motion 
in a velocity form of the Verlet algorithms [32]. A 1332-particle cluster with periodic 
boundary conditions is used and the lattice parameter of the molecular dynamics cell 
is expanded to give the required liquid density [ZS]. The time increment h in our 
simulations is chosen to be approximately s. The liquid is then ‘heated’ by 
raising initial temperature and subsequently scaling it down to the required value. 
m i c a ]  simulations run up to (s) x 104 steps. 

3.2. Results 

The pair correlation functions g(r) are calculated for 3d transition metals ailer 
averaging over about 250-300 independent configurations taken at intervals at 100 
time steps. In order to verify the shouldered effect of the s-d hybridized potential, 
we present in figure 2 the results of g(r) calculated for both cases: with the full 
potential and with only the d prt for Ti, Fe and Ni. It is clear from this figure 
that the very deep potential well predicted in the second case leads to a noticeable 
change in the theoretical determination of the first peak magnitude of g(r) for a 
transition metal with less than half-filled (Ti) and with half-filled (Fe) d bands. This 
remark is in agreement with Regnaut’s discussion on the validity of w potentials [SI. 
The static structure factors S(q) for all the 3d elements are given in figure 3. Note 
that our molecular dynamics simulation achieves a good fit to the diffraction data 
[33] including the lightest 3d metal Ti and V [MI. By remembering that there are 
only hvo experimental data to parametrize the interatomic interactions constructed in 
our s-d hybridization formalism, we think that they can serve as a basis for reliable 
simulations of liquid transition metals. 

4 Electronic structure and total energy of the 3d liquid transition metals 

4.1. Electronic demily of states 

In order to test the validity of our interatomic interactions, we have also calculated 
the electronic density of states of the molten 3d transition metals, from the atomic 
coordinates obtained by molecular dynamics simulations. Using the same tight-binding 
Hamiltonian, the recursion method has been used and we have stopped the recursion 
after about 12 levels for s and d orbitals. The site-averaged DOS was calculated for 
a sample of 10 atoms randomly chosen among the innermost atoms. The electronic 
densities of states of the 3d liquid transition metals are shown in figure 4. Although 
the global behaviour of the total DOS can be dominated by the d-band contribution, 
the sd hybridization effect can lead to a decrease in the s DOS inside the d band as 
has heen shown by Mayou et a2 191. Except for the cases of Ti and y where band 
narrowing is expected in comparison with the crystalline case because of the large 
volume expansion in the liquid state, we have found that the bandwidth is the same 
in the molten and crystalline states. Figure 4 displays the characteristic bonding- 
antibonding splitting in the d band as has been obtained from the supercell linear 
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Pigum 2. Pair "elation function g(r) obtained Sora MD simulations for three 
representative liquid wansition metals of the 3d series: Ti, Fe and Ni. Full NWS 
ase calculated from total hybridized sd potential and dotted CUNS fmra d potential 
without hybridization. 

mumn-tin orbital (LMTO) approach of Jank et al [35]. In table 2 our calculated DOS 
at the Fermi level for the 3d liquid elements are compared with the data of Jank et 
al and with those estimated from the magnetic susceptibilities [NI. 

4.2. Hybridization bond energy 

The bond energy can be calculated in two different ways: it can be obtained either 
from the average DOS calculated by a recursion method or from the attractive part of 
the interatomic interactions; in this case, we use an average interatomic distance and 
an average coordination number deduced from the position and the area of the first 
peak of the pair correlation function respectively. The results of both estimations 
are compared in table 3 and show good agreement between these two methods. 



Figure 3. Slatic smcture factor S(q) for liquid 3d transition metals from Ti 10 Cu. Full 
CLUVS: MD simulation. Dotted c u m :  experiment p3]. 

Another interesting aspect is the role played by s-d hybridization in the bonding 
energy of the transition-metal systems. Thii problem has been analysed in detail 
with the renormalized atom approximation for the 3d and 4d series 1161. However, 
in this work, the s-d hybridization terms have been estimated by a semiquantitative 
partitioning of their contributions across the series. As has been shown in section 2 
the total bonding energy in our approach may be written as 
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Figure 4 Calculated elecrranic density of stata for the liquid 3d transition metals. Full 
c u m  correspond U) the total oo$ bmken cuwes io s pnial DOS and dotted CUNS to 
d partial DOS n e  Fermi energy Q marked with a vertical line labelled eC 

with 



Effecf of s-d hybridization on 3d metals 1913 

Tabk 2. Comparison of our calculated density of states at the Fermi level with the 
supemell approach [35] and with orpenmental ones for liquid Mn, Fe, CO and Ni p6). 

~ ( E F )  (stawev atom) 

Calculated h m  Calculated from Experiment 
Element this paper PSI [361 
Mn 250 234 2.40 
Fe 263 259 260 
CO 3.02 299 295 
Ni 1.92 210 210 

%bk 3 l b e  calculated toul bond energy obtained from the calculated DOS and from 
the XBLM seli-consistent calculations The founh column shows the ratio d the sd 
hybridized contribution to the total bond energy for the liquid M transition metal. 

E% 
El%; (f" %ELM 

(Cmm calmlaled self-consistent 
-1 calculations) 2Es id  - 

E,% Element (ev) (ev) 

Ti -10.22 -10.17 0.52 
V -15.06 - 14.98 0.49 
Cr -17.89 -17.97 0.47 
M" -14.94 -14.96 0.49 
Fe -13.14 -13.22 052 
CO -10.73 -10.67 0.46 
Ni - 9.76 - 9.70 0.63 
cu - 5.38 - 5.46 0.42 

Tabk 4. Heat d fusion for the liquid 3d fransition metals. lbeoly: calculated in the 
CBLM appmach. Experiment from 1401. 

V 17.08 1558 
cr 14.22 14.63 
Mn 14.85 14.63 
Fe 14.70 15.05 
CO 16.23 16.51 
Ni 17.85 17.22 
cu 13.69 1296 

The ratio 2Etzd/Ek;f is also presented in table 3 to emphasize the important 
percentage of s-d hybridization in bonding energies. It gives about 50% for all 
elements of the 3d series and it b about 60% for Ni liquid. For the last case, it 
is clear from figure 1 that, at the equilibrium position of the melr state, the s-like 
contribution of the  pair potential becomes negative due to the hybridization effects. 

43. The heat of fusion 

By definition, the heat of fusion may be estimated by comparing the cohesive energies 
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5. Discussions and muclusions 

We have constructed interatomic potentials based on the SCBLM formalism that takes 
into account the important sd hybridization effect for the transition-metal systems. 
The expressions of the potentials are general and they can be applied to study liquid 
or amorphous alloys. The short-range order in these systems may be incorporated 
in a self-consistent manner and the results will be published elsewhere. In this 
paper we have used this formalism to study the atomic and electronic structure of 
the liquid 36 transition metals. We have found that the s-d hybridization effects 
improves the description of the liquid structure not only for the late 3d elements 
but also for the half-filled and less than half-filled ones. These correct trends for 
the 3d liquid structure have been confirmed by: (i) the good agreement of the 
static structure factors obtained from our molecular dynamics simulations with the 
experimental ones; (ii) the TB DOS, which are similar to those calculated from ob 
initio calculations; and (i) the theoretical results of the heat of fusion, which are 
in agreement with the experimental ones. These results are very promising and 
may be explained by the fact that we have obtained a decisive improvement in the 
treatment of s electrons in comparison with the WH model. In this model, s-d 
hybridization is only treated by changing the relative occupancies of the s and d 
bands, so that the most important effect of band mixing between s and d bands is 
neglected. Our formalism is based on Pettifor’s description of the bonding energ., but 
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the contributions of multi-ion terms are not taken into account in our study, owing 
to the Bethe lattice self-consistent approximation. However, as has been explained 
previously, it allows us to incorporate the hybridization effects in a simple way and 
therefore the bond energy can be associated explicitly through the fourth moment 
of the local density of states. Therefore, these effective pair potentials are naturally 
better than those obtained from the embedded atom models, which are valid only 
within the second moment approximation. 
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Appendix 

When the repulsive and attractive pair interactions are parametrized as a power law, 
the bonding energy for a given structure in the one-band case is 

The equilibrium interatomic separation re is determined from [dEB( r)/dr]lT=7e 
= 0, which gives 

and 

De = -E B(re) = Z A a ( s -  l)(l/rg) = Z B b [ s / ( s -  l)](l/rz) (W 
where De is the cohesive energy and 

s = P/+ (-44) 

From (Al)-(A3) the scaling procedure is 

If one defines 
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then it k not difficult to find 

L. Do Phuong et ai 

1 = r e / ( p q ) l l 2 .  (A? 

Substituting (A7) into (AS) gives 

with 

3-l = (r,/r)q = [ ( 1 / r ) ( p q ) ' / 2 ] q S  (-49) 

In figure 5 we show the dependence of the scaled bonding energy (AS) as a 

In order to analyse the structure dependence of De we introduce a scaling 
function of y for different values of s = p / q .  

procedure that retains the structure variables a and b. One defines 

with 

1 (s-1) 1 De. = A ( s  - 1 ) ~  = B-- 
7.2 s r& 

with 

y-1 = (re2/r)9. 

Therefore from 
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we have 

TJe = (b/a) ' / (s-L)  (*16) 

and 

or 

Equation (A17) has exactly the same expression as those obtained from 
exponential parametrization (see equation (28) of [22]). For the FCC lattice (2  = 12), 
the recursion method gives b(FCC) = 0.206 with a = 1; so using equation (A17) one 
obtains s = 2.7. 
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